CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Instructor: Andy Phelps
TAs: Newsha Ardalani, Peter Ohmann and Jai Menon

Midterm Examination 1
In Class (50 minutes)
Friday, Feb 11
Weight: 15%

NO: BOOK(S), NOTE(S), CALCULATORS OF ANY SORT.

This exam has 8 pages, including a blank page at the end. Plan your time carefully, since some problems are longer than others. You must turn in pages 1 to 6.

LAST NAME:	 	 	
FIRST NAME:_	 	 	
SECTION: _	 		
ID# _			

Question	Maximum Point	Points
1	6	
2	8	
3	4	
4	8	
5	4	
6	10	
Total	40	

\sim 1	-	• 4 \
() . (h	points)
ν <u>.</u>	v	points,

The v	alue -	19,739	can	be	e repre	esei	ntec	l as a	2's	CO	mple	en	nen	t in	teg	er	wit	h 1	6 b	its	as s	sho	wn	be	low	/ :
a. Rep	oresen	t -19, '	741 :	as	a 2's (con	nple	ment	t int	ege	er w	ith	16	ō bi	ts i	n tl	he l	оох	pro	ovi	dec	1. (2	2 рс	oin	ts)	
b. Re _l	oresen	it -19,	739	as	a 2's	con	nple	emen	t int	tege	er w	ith	n 32	2 bi	ts i	n t	he l	box	pr	ovi	dec	d. (4	4 pc	oin	ts)	
	alue "	ts) -4 3/8' e show			_		ente	d by	the	stri	ings	oi	f Os	s an	ıd 1	ls a	ncc(ord:	ing	to	the	fo	llov	vin	g d	ata
betw assur strin	y repr een th me it i	esent to the quotest a null was your nal)	tation	n n mi	narks nated	ano	d																			
32 B	it IEI	EE Flo	atin	g l	Point																					
The b	its for	an IEl	EE fl	loa	ting p	oir	ıt nı	ımbe	r ar	e al	lloca	ate	ed a	ıs fo	ollo	ows	s:									
Si	gn (1	bit)		E	xpone	nt ((8 b	its)							F	rac	tioı	ı (2	23 b	oits)					

where $N = (-1)^S \times 1$.fraction $\times 2^{exponent-127}$

Q3. (4 points)

Give an example of an *integer* that can be represented in floating point format (32-bit IEEE format), but cannot be represented as a 32-bit two's complement integer. Show its hexadecimal representation.

Q4. (8 points)

Fill in the following boxes with appropriate values. If there are more than one values possible, write all the possible values. Mark in "NA" if something is not possible.

Number	8-bit Unsigned binary	8-bit Sign-magnitude	8-bit 2's-complement
128			
-128			
127			
-100			

Q5. (4 points)

Add the following 8-bit numbers in 2's-complement notation. For each set, provide the sum (in 8-bit 2's-complement) and indicate whether or not an overflow has occurred.

a. $0101\ 1011 + 0010\ 0000$

b. 1110 0010 + 0001 1011

Q6. (2 points each)

- I. When referring to an algorithm, definiteness means:
 - a. Each step must be precisely defined
 - b. The algorithm's variables must not overflow a fixed number of bits
 - c. The number of unknowns and equations is the same
 - d. All of the above
- II. Two computers, A and B, are identical except for the fact that A has a divide instruction and B does not. Both have subtract instructions. Which of the following is true?
 - a.B can compute all the same problems as A, in the same amount of time.
 - b. B can compute all the same problems as A, in the same amount of time, given enough memory.
 - d. B can compute all the same problems as A, but might take longer.
 - e. A can compute more types of problems than B.
- III. A Turing machine is an abstract idea that helps us to define:
 - a. How to do binary arithmetic
 - b. What it means to compute
 - c. How to make an infinite tape
 - d. The shortcomings of digital computers compared to analog
- IV. A collection of n bits can have how many states?
 - a. n
 - b 2n
 - c. 2ⁿ
 - $d. 2^{n-127}$
- V. Put the following in order of their levels of abstraction. "1" represents the lowest level, and "4" represents the highest level.
 - a. Instruction Set Architecture
 - b. Algorithm
 - c. Transistors and other such devices
 - d. Circuits

1	2	3	4

ASCII Table

Character	Hex	Character	Hex	Character	Hex	Character	Hex
nul	00	sp	20	@	40	`	60
soh	01	!	21	A	41	a	61
stx	02	"	22	В	42	ь	62
etx	03	#	23	C	43	c	63
eot	04	\$	24	D	44	đ	64
enq	05	%	25	E	45	e	65
ack	06	&	26	F	46	f	66
bel	07		27	G	47	g	67
bs	08	(28	H	48	h	68
ht	09)	29	I	49	i	69
1f	0A	*	2A	J	4A	j	6A
vt	0B	+	2B	K	4B	k	6B
ff	0C	,	2C	L	4C	1	6C
cr	0D	-	2D	M	4D	m	6D
so	0E		2E	N	4E	n	6E
si	0F	/	2F	O	4F	o	6F
dle	10	0	30	P	50	p	70
dc1	11	1	31	Q	51	q	71
dc2	12	2	32	R	52	r	72
dc3	13	3	33	S	53	s	73
dc4	14	4	34	T	54	t	74
nak	15	5	35	U	55	u	75
syn	16	6	36	V	56	v	76
etb	17	7	37	W	57	w	77
can	18	8	38	X	58	x	78
em	19	9	39	Y	59	y	79
sub	1A	:	3A	Z	5A	z	7A
esc	1B	;	3B]	5B	{	7B
fs	1C	<	3C	\	5C	1	7C
gs	1D	=	3D]	5D	}	7D
rs	1E	>	3E	^	5 E	~	7E
นร	1F	?	3F	_	5 F	del	7F